
Lecture Notes 
from simple field theories to the standard model 

by Richard C. Slansky 

T he standard model of electroweak and strong interactions 
consists of two relativistic quantum field theories, one to 
describe the strong interactions and one to describe the 
electromagnetic and weak interactions. This model, which 

incorporates all the known phenomenology of these fundamental 
interactions, describes spinless, spin-%, and spin-1 fields interacting 
with one another in a manner determined by its Lagrangian. The 
theory is relativistically invariant, so the mathematical form of the 
Lagrangian is unchanged by Lorentz transformations. 

Although rather complicated in detail, the standard model La- 
grangian is based on just two basic ideas beyond those necessary for a 
quantum field theory. One is the concept of local symmetry, which is 
encountered in its simplest form in electrodynamics. Local symmetry 

determines the form of the interaction between particles, or fields, 
that carry the charge associated with the symmetry (not necessarily 
the electric charge). The interaction is mediated by a spin- 1 particle, 
the vector boson, or gauge particle. The second concept is spon- 
taneous symmetry breaking, where the vacuum (the state with no 
particles) has a nonzero charge distribution. In the standard model 
the nonzero weak-interaction charge distribution of the vacuum is 
the source of most masses of the particles in the theory. These two 
basic ideas, local symmetry and spontaneous symmetry breaking, are 
exhibited by simple field theories. We begin these lecture notes with a 
Lagrangian for scalar fields and then, through the extensions and 
generalizations indicated by the arrows in the diagram below, build 
up the formalism needed to construct the standard model. 
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We begin Uno introduction to field theory with one of the simplest 
theories, a complex scalar field theory with independent fields q(x) 
and $(x). (qf(x) is the complex conjugate of ~ ( x )  if q(x) is a classical 
field, and, if cp(x) is generalized to a column vector or to a quantum 
field, cpi(x) is the Hermitian conjugate of ~(x) . )  Since (o(x) is a 
complex function in classical field theory, it assigns a complex 
number to each four-dimensional point x = (ct, x) of time and space. 
The symbol x denotes all four components. In quantum field theory 
p(x) is an operator that acts on a state vector in quantum-mechanical 
Hilbert space by adding or removing elementary particles localized 
around the space-time point x. 

In this note we present the case in which ~ ( x )  and $(x) correspond 
respectively to a spinless charged particle and its antiparticle of equal 
mass but opposite charge. The charge in this field theory is like 
electric charge, except it is not yet coupled to the electromagnetic 
field. (The word "charge" has a broader definition than just electric 
charge.) In Note 3 we show how this complex scalar field theory can 
describe a quite different particle spectrum: instead of a particle and 
its antiparticle of equal mass, it can describe a particle of zero mass 
and one of nonzero mass, each of which is its own antiparticle. Then 
the scalar theory exhibits the phenomenon called spontaneous sym- 
metry breaking, which is important for the standard model. 

A complex scalar theory can be defined by the Lagrangian density, 

where 3,q) = Q f̂Q .̂ (Upper and lower indices are related by the 
metric tensor, a technical point not central to this discussion.) The 
Lagrangian itself is 

The first term in Eq. la is the kinetic energy of the fields cp(x) and 
&x), and the last two terms are the negative of the potential energy. 
Terms quadratic in the fields, such as the -w2cptq term in Eq. la. 
are called mass terms. If m2 > 0, then q(x) describes a spinless 
particle and fix) its antiparticle of identical mass. If m2 < 0, the 
theory has spontaneous symmetry breaking. 

The equations of motion are derived from Eq. 1 by a variational 
method. Thus, let us change the fields and their derivatives by a small 
amount &(x) and 5QU<p(x) = Qu8(p(-x}. Then, 

where the variation is defined with the restrictions 5q(x,ti) = 8<p(qi2) 
= 8qi(x,tl) = 8cpt(x,t2) = 0, and 8cp(x) and S$(x) are independent. The 
last two terms are integrated by parts, and the surface term is dropped 
since the integrand vanishes on the boundary. This procedure yields 
the Euler-Lagrange equations for (E (̂x), 

and for cp(x). (The Euler-Lagrange equation for q(x) is like Eq. 3 
except that q̂  replaces (p. There are two equations because 8cp(x) and 
8q^(x) are independent.) Substituting the Lagrangian density, Eq. la, 
into the Euler-Lagrange equations, we obtain the equations of mo- 
tion, 

plus another equation of exactly the same form with q(x) and 
cpt(x) exchanged. 

This method for finding the equations of motion can be easily 
generalized to more fields and to fields with spin. For example, a field 
theory that is incorporated into the standard model is elec- 
trodynamics. Its list of fields includes particles that carry spin. The 
electromagnetic vector potential A,(x) describes a "vector" particle 
with a spin of 1 (in units of the quantum of action h = 1.0546 X l o 2 '  
erg second), and its four spin components are enumerated by the 
space-time vector index p ( = 0, 1, 2, 3, where 0 is the index for the 
time component and 1, 2, and 3 are the indices for the three space 
components). In electrodynamics only two of the four components of 
A#) are independent. The electron has a spin of V2, as does its 
antiparticle, the positron. Electrons and positrons of both spin pro- 
jections, k1/2, are described by a field ~ ( x ) ,  which is a column vector 
with four entries. Many calculations in electrodynamics are com- 
plicated by the spins of the fields. 

There is a much more difficult generalization of the Lagrangian 
formalism: if there are constraints among the fields, the procedure 
yielding the Euler-Lagrange equations must be modified, since the 
field variations are not all independent. This technical problem 
complicates the formulation of electrodynamics and the standard 
model, especially when computing quantum corrections. Our ex- 
amination of the theory is not so detailed as to require a solution of 
the constraint problem. 



. Continuous 

It is often possible to find sets of fields in the Lagrangian that can 
be rearranged or transformed in ways described below without 
changing the Lagrangian. The transformations that leave the La- 
grangian unchanged (or invariant) are called symmetries. First, we 
will look at the form of such transformations, and then we will 
discuss implications of a symmetrical Lagrangian. In some cases 
symmetries imply the existence of conserved currents (such as the 
electromagnetic current) and conserved charges (such as the electric 
charge), which remain constant during elementary-particle collisions. 
The conservation of energy, momentum, angular momentum, and 
electric charge are all derived from the existence of symmetries. 

Let us consider a continuous linear transformation on three real 
spinless fields (pi(x) (where i = 1,2, 3) with (p,(x) = (p:(x). These three 
fields might correspond to the three pion states. As a matter of 
notation, ~ ( x )  is a column vector, where the top entry is (pi(x), the 
second entry is Q-Ax), and the bottom entry is (ps(x). We write the 
linear transformation of the three fields in terms of a 3-by-3 matrix 
U(E), where 

or in component notation 

(p/(x') = UÃ£(e)w(x - 

The repeated index is summed from 1 to 3, and generalizations to 
different numbers or kinds of fields are obvious. The parameter E is 
continuous, and as E approaches zero, U(E) becomes the unit matrix. 
The dependence of x' on x and E is discussed below. The continuous 
transformation U(E) is called linear since q(x) occurs linearly on the 
right-hand side of Eq. 5. (Nonlinear transformations also have an 
important role in particle physics, but this discussion of the standard 
model will primarily involve linear transformations except for the 
vector-boson fields, which have a slightly different transformation 
law, described in Note 5.) For N independent transformations, there 
will be a set of parameters ea, where the index a takes on values from 
1 to N. 

For these continuous transformations we can expand (i/(x') in a 
Taylor series about = 0; by keeping only the leading term in the 
expansion, Eq. 5 can be rewritten in infinitesimal form as 

where Tn is the first term in the Taylor expansion, 

with 8x = x' - x. The Tn are the "generators" of the symmetry 
transformations of (p(x). (We note that @(x) in Eq. 6a is a small 
symmetry transformation, not to be confused with the field varia- 
tions 8(p in Eq. 2.) 

The space-time point x' is, in general, a function of x. In the case 
where x' = x, Eq. 5 is called an internal transformation. Although our 
primary focus will be on internal transformations, space-time sym- 
metries have many applications. For example, all theories we de- 
scribe here have Poincare symmetry, which means that these theories 
are invariant under transformations in which x' = A x  + b, where A is 
a 4-by-4 matrix representing a Lorentz transformation that acts on a 
four-component column vector x consisting of time and the three 
space components, and b is the four-component column vector of the 
parameters of a space-time translation. A spinless field transforms 
under Poincare transformations as (p'(x') = (p (x)  or 89 = -bV,,cp(x). 
Upon solving Eq. 6b, we find the infinitesimal translation is repre- 
sented by idp. The components of fields with spin are rearranged by 
Poincare transformations according to a matrix that depends on both 
the e's and the spin of the field. 

We now restrict attention to internal transformations where the 
space-time point is unchanged; that is, 5x11 = 0. If is an in- 
finitesimal, arbitrary function ofx, E~(X), then Eqs. 5 and 6a are called 
local transformations. If the are restricted to being constants in 
space-time, then the transformation is called global. 

Before beginning a lengthy development of the symmetries of 
various Lagrangians, we give examples in which each of these kinds 
of linear transformations are, indeed, symmetries of physical the- 
ories. An example of a global, internal symmetry is strong isospin, as 
discussed briefly in "Particle Physics and the Standard Model." 
(Actually, strong isospin is not an exact symmetry of Nature, but it is 
still a good example.) All theories we discuss here have global Lorentz 
invariance, which is a space-time symmetry. Electrodynamics has a 
local phase symmetry that is an internal symmetry. For a charged 
spinless field the infinitesimal form of a local phase transformation is 
@(x) = ie(x)(p(x) and 6(pt(x) = -i~(x)<^(x), where (p(x) is a complex 
field. Larger sets of local internal symmetry transformations are 
fundamental in the standard model of the weak and strong interac- 
tions. Finally, Einstein's gravity makes essential use of local space- 
time Poincare transformations. This complicated case is not dis- 
cussed here. It is quite remarkable how many types of transforma- 
tions like Eqs. 5 and 6 are basic in the formulation of physical 
theories. 

Let us return to the column vector of three real fields q(x) and 
suppose we have a Lagrangian that is unchanged by Eqs. 5 and 6, 
where we now restrict our attention to internal transformations. (One 
such Lagrangian is Eq. la, where q(x) is now a column vector and 
(^(x) is its transpose.) Not only the Lagrangian, but the Lagrangian 
density, too, is unchanged by an internal symmetry transformation. 



the Standard Model 

Let us consider the infinitesimal transformation (Eq. 6a) and calcu- 
late 5 9  in two different ways. First of all, 5 9  = 0 if 5(p is a symmetry 
identified from the Lagrangian. Moreover, according to the rules of 
partial differentiation, 

Then, using the Euler-Lagrange equations (Eq. 3) for the first term 
and collecting terms, Eq. 7 can be written in an interesting way: 

The next step is to substitute Eq. 6a into Eq. 8. Thus, let us 
define the current J$x) as 

Then Eq. 8 plus the requirement that 8(p is a symmetry imply the 
continuity equation, 

We can gain intuition about Eq. 10 from electrodynamics, since the 
electromagnetic current satisfies a continuity equation. It says that 
charge is neither created nor destroyed locally: the change in the 
charge density, Jo(x), in a small region of space is just equal to the 
current J(x) flowing out of the region. Equation 10 generalizes this 
result of electrodynamics to other kinds of charges, and so Jl(x) is 
called a current. In particle physics with its many continuous sym- 
metries, we must be careful to identify which current we are talking 
about. 

Although the analysis just performed is classical, the results are 
usually correct in the quantum theory derived from a classical 
Lagrangian. In some cases, however, quantum corrections contribute 
a nonzero term to the right-hand side of Eq. 10; these terms are called 
anomalies. For global symmetries these anomalies can improve the 
predictions from Lagrangians that have too much symmetry when 
compared with data because the anomaly wrecks the symmetry (it 
was never there in the quantum theory, even though the classical 
Lagrangian had the symmetry). However, for local symmetries 
anomalies are disastrous. A quantum field theory is locally sym- 
metric only if its currents satisfy the continuity equation, Eq. 10. 
Otherwise local symmetry transformations simply change the theory. 
(Some care is needed to avoid this kind of anomaly in the standard 
model.) We now show that Eq. 10 can imply the existence of a 
conserved quantity called the global charge and defined by 

provided the integral over all space in Eq. 11 is well defined; that is, 

J$(x) must fall off rapidly enough as 1x1 approaches infinity that the 
integral is finite. 

If Qa(t) is indeed a conserved quantity, then its value does not 
change in time, which means that its first time derivative is zero. We 
can compute the time derivative of Qa(t) with the aid of Eq. 10: 

The next to the last step is Gauss's theorem, which changes the 
volume integral of the divergence of a vector field into a surface 
integral. If Ja(x) falls off more rapidly than l/lx12 as 1x1 becomes very 
large, then the surface integral must be zero. It is not a always true 
that Ja(x) falls off so rapidly, but when it does, Qa(t) = Qa is a 
constant in time. One of the most important experimental tests of a 
Lagrangian is whether the conserved quantities it predicts are, in- 
deed, conserved in elementary-particle interactions. 

The Lagrangian for the complex scalar field defined by Eq. 1 has an 
internal global symmetry, so let us practice the above steps and 
identify the conserved current and charge. It is easily verified that the 
global phase transformation 

leaves the Lagrangian density invariant. For example, the first term 
of Eq. 1 by itself is unchanged: dpcptdhp becomes ~ ~ { e - ~ ~ ( p ~ ) a p ( P ~ )  
= dP(p1̂ 11(p, where the last equality follows only if e is constant in 
space-time. (The case of local phase transformations is treated in 
Note 5.) The next step is to write the infinitesimal form of Eq. 13 and 
substitute it into Eq. 9. The conserved current is 

where the sum in Eq. 9 over the fields (p(x) and (f>^(x) is written out 
explicitly. 

If m2 > 0 in Eq. 1, then all the charge can be localized in space and 
time and made to vanish as the distance from the charge goes to 
infinity. The steps in Eq. 12 are then rigorous, and a conserved charge 
exists. The calculation was done here for classical fields, but the same 
results hold for quantum fields: the conservation law implied by Eq. 
12 yields a conserved global charge equal to the number of (p particles 
minus the number of (p antiparticles. This number must remain 
constant in any interaction. (We will see in Note 3 that if m 2  < 0, the 
charge distribution is spread out over all space-time, so the global 
charge is no longer conserved even though the continuity equation 
remains valid.) 

Identifying the transformations of the fields that leave the La- 
grangian invariant not only satisfies our sense of symmetry but also 
leads to important predictions of the theory without solving the 
equations of motion. In Note 4 we will return to the example of three 
real scalar fields to introduce larger global symmetries, such as SU(2), 
that interrelate different fields. 
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Spontaneous 

Global Symmetry 
It is possible for the vacuum or ground state of a physical system to 
ve less symmetry than the Lagrangian. This possibility is called 
ntaneous symmetry breaking, and it plays an important role in 
standard model. The simplest example is the complex scalar field 

eory of Eq. la with m2 < 0. 
In order to identify the classical fields with particles in the quan- 
m theory, the classical field must approach zero as the number of 
rticles in the corresponding quantum-mechanical state approaches 
ro. Thus the quantum-mechanical vacuum (the state with no 

articles) corresponds to the classical solution <o(x) = 0. This might 
eem automatic, but it is not. Symmetry arguments do not 

cessarily imply that q(x) = 0 is the lowest energy state of the 
em. However, ifwe rewrite q(x) as a function of new fields that do 

nish for the lowest energy state, then the new fields may be directly 
entitled with particles. Although this prescription is simple, its F i g d  The Hamibnian * defined by Eq- 15 has minima at 
stification and analysis of its li extensive use of nonzero values of thefield 0. 
e details of quantum field theory. 
The energy of the complex scalar theory is the sum of kinetic and 1 

Id configuration with lowest energy. A graph of J  ̂as a function of 
is shown in Fig. 1. In this example Jf is at its lowest value when 

th the kinetic and potential energies (V = m 2 q b  % ~ 9 % ) ~ )  are at 

xample, we can set 

particles. Note, however, that (po is not completely specified; it may 
lie at any point on the circle in field space defined by Eq. 16, as shown Fig- 2- The blue curve is the bcation of the minimum of v in 
in Fig. 2. the field space q. 

by the phase transformation. Thus, the vacuum solution is not 
po = (-rnWf2, ( 18) invariant under the phase transformations, so the phase symmetry is 

spontaneously broken. The symmetry of the Lagrangian is not a 
[Tien the Lagrangian is still invariant under the phase transforma- symmetry of the vacuum. (For m2 > 0 in Eq. 1, the vacuum and the 
ions in Ea. 13. but the choice of the vacuum field solution is changed Lagrangian both have the phase symmetry.) 



and the Standard Model 

Fig. 3. A graphic representation of the last four terms of Eq. 
20, the interaction terms. Solid lines denote the p field and 
dotted lines the afield. The interaction of three p(x) fields at 
a single point is shown as three solid lines emanating from a 
single point. In perturbation theory this so-called vertex 
represents the lowest order quantum-mechanical amplitude 
for one particle to turn into two. All possible configurations 
of these vertices represent the quantum-mechanical 
amplitudes defined by the theory. 

We now rewrite the Lagrangian in terms of the particle fields p(x) 
and n(x) by substituting Eq. 17 into Eq. 1. The Lagrangian becomes 

To estimate the masses associated with the particle fields p(x) and 
n(x), we substitute Eq. 18 for the constant (po and expand 9' in powers 
of the fields n(x) and p(x), obtaining 

1 1 + - pap7tap7C + -2 p2ap7ta,,7t . 
(PO 2 (Po 

This Lagrangian has the following features. 

0 The fields p(x) and ~ ( x )  have standard kinetic energy terms. 

0 Since m2 < 0, the term m2p2 can be interpreted as the mass term for 
the p(x) field. The p(x) field thus describes a particle with mass- 
squared equal to \m\ not - \m2\. 

0 The n(x) field has no mass term. (This is obvious from Fig. 2, 
which shows that -27(p,n) has no curvature (that is, d2^e/d7t2 = 0) in 
the ~ ( x )  direction.) Thus, n(x) corresponds to a massless particle. 
This result is unchanged when all the quantum effects are in- 
cluded. 

0 The phase symmetry is hidden in -S? when it is written in terms of 
p(x) and n(x). Nevertheless, -27 has phase symmetry, as is proved 
by working backward from Eq. 20 to Eq. 16 to recover Eq. la. 

0 In theories without gravity, the constant term V m4/k can be 
ignored, since a constant overall energy level is not measurable. 
The situation is much more complicated for gravitational theories, 
where terms of this type contribute to the vacuum energy-momen- 
turn tensor and, by Einstein's equations, modify the geometry of 
space-time. 

0 The p field interacts with the JI field only through derivatives of JI. 
The interaction terms in Eq. 20 may be pictured as in Fig. 3. 

Although this model might appear to be an idle curiosity, it is an 
example of a very general result known as Goldstone's theorem. This 
theorem states that in any field theory there is a zero-mass spinless 
particle for each independent global continuous symmetry of the 
Lagrangian that is spontaneously broken. The zero-mass particle is 
called a Goldstone boson. (This general result does not apply to local 
symmetries, as we shall see.) 

There has been one very important physical application of spon- 
taneously broken global symmetries in particle physics, namely, 
theories of pion dynamics. The pion has a surprisingly small mass 
compared to a nucleon, so it might be understood as a zero-mass 
particle resulting from spontaneous symmetry breaking of a global 
symmetry. Since the pion mass is not exactly zero, there must also be 
some small but explicit terms in the Lagrangian that violate the 
global symmetry. The feature of pion dynamics that justifies this 
procedure is that the interactions of pions with nucleons and other 
pions are similar to the interactions (see Fig. 3) of the n(x) field with 
the p(x) field and with itself in the Lagrangian of Eq. 20. Since the 
pion has three (electric) charge states, it must be associated with a 
larger global symmetry than the phase symmetry, one where three 
independent symmetries are spontaneously broken. The usual choice 
of symmetry is global SU(2) X SU(2) spontaneously broken to the 
SU(2) of the strong-interaction isospin symmetry (see Note 4 for a 
discussion of SU(2)). This description accounts reasonably well for 
low-energy pion physics. 

Perhaps we should note that only spinless fields can acquire a 
vacuum value. Fields carrying spin are not invariant under Lorentz 
transformations, so if they acquire a vacuum value, Lorentz in- 
variance will be spontaneously broken, in disagreement with experi- 
ment. Spinless particles trigger the spontaneous symmetry breaking 
in the standard model. 
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Lagrangians with 
, Larger Global 
Symmetries 

In a theory with a single complex scalar field the phase transforma- 
tion in Eq. 13 defines the "largest" possible internal symmetry since 
the only possible symmetries must relate q(x) to itself. Here we will 
discuss global symmetries that interrelate different fields and group 
them together into "symmetry multiplets." Strong isospin, an ap- 
proximate symmetry of the observed strongly interacting particles, is 
an example. It groups the neutron and the proton into an isospin 
doublet, reflecting the fact that the neutron and proton have nearly 
the same mass and share many similarities in the way that they 
interact with other particles. Similar comments hold for the three 
pion states (d, no, and n), which form an isospin triplet. 

We will derive the structure ofstrong isospin symmetry by exarnin- 
ing the invariance of a specific Lagrangian for the three real scalar 
fields (pi(x) already described in Note 2. (Although these fields could 
describe the pions, the Lagrangian will be chosen for simplicity, not 
for its capability to describe pion interactions.) 

We are about to discover a symmetry by deriving it from a 
Lagrangian; however, in particle physics the symmetries are often 
discovered from phenomenology. Moreover, since there can be many 
Lagrangians with the same symmetry, the predictions following from 
the symmetry are viewed as more general than the predictions of a 
specific Lagrangian with the symmetry. Consequently, it becomes 
important to abstract from specific Lagrangians the general features 
of a symmetry; see the comments later in this note. 

A general linear transformation law for the three real fields can be 
written 

where the sum on j runs from 1 to 3. One reason for choosing this 
form of U(E) is that it explicitly approaches the identity as e ap- 

proaches zero. 
To identify the generators Ta with matrix elements (T&, we use a 

specific Lagrangian, 

Let us place primes on the fields in Eq. 22 and substitute Eq. 21 into 
it. Then 9 written in terms of the new q(x) is exactly the same as Eq. 
22 if 

where 8,t are the matrix elements of the 3-by-3 identity matrix. (In 
the notation of Eq. 5a, Eq. 23 is U(e)UT(&) = I.) Equation 23 can be 
expanded in cÃ£ and the linear term then requires that Ta be an 
antisymmetric matrix. Moreover, exp (ieaTa) must be a real matrix so 
that q(x) remains real after the transformation. This implies that all 
elements of the Ta are imaginary. These constraints are solved by the 
three imaginary antisymmetric 3-by-3 matrices with elements 

where 8123 = +1 and gabe is antisymmetric under the interchange of 
any two indices (for example, Â£32 = -1). (It is a coincidence in this 
example that the number of fields is equal to the number of inde- 
pendent symmetry generators. Also, the parameter Ea with one index 
should not be confused with the tensor gabc with three indices.) 

The conditions on U(e) imply that it is an orthogonal matrix; 3- 
by-3 orthogonal matrices can also describe rotations in three spatial 
dimensions. Thus, the three components of q j  transform in the same 
way under isospin rotation as a spatial vector x transforms under a 
rotation. Since the rotational symmetry is SU(2), so is the isospin 
symmetry. (Thus Lbisospin" is like spin.) The Ta matrices satisfy the 
SU(2) commutation relations 
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Although the explicit matrices of Eq. 24 satisfy this relation, the Ta 
can be generalized to be quantum-mechanical operators. In the 
example of Eqs. 21 and 22, the isospin multiplet has three fields. 
Drawing on angular momentum theory, we can learn other 
possibilities for isospin multiplets. Spin-J multiplets (or representa- 
tions) have 2J + 1 components, where J can be any nonnegative 
integer or half integer. Thus, multiplets with isospin of 9'2 have two 
fields (for example, neutron and proton) and isospin-3/2 multiplets 
have four fields (for example, the A*, A+, A', and A baryons of mass - 1232 G~v/c-). 

The basic structure of all continuous symmetries of the standard 
model is completely analogous to the example just developed. In fact, 
part of the weak symmetry is called weak isospin, since it also has the 
same mathematical structure as strong isospin and angular momen- 
tum. Since there are many different applications to particle theory of 
given symmetries, it is often useful to know about symmetries and 
their multiplets. This mathematical endeavor is called group theory, 
and the results of group theory are often helpful in recognizing 
patterns in experimental data. 

Continuous symmetries are defined by the algebraic properties of 
their generators. Group transformations can always be written in the 
form of Eq. 21. Thus, if Qa (a = 1, . . . , N) are the generators of a 
symmetry, then they satisfy commutation relations analogous to Eq. 
25: 

multiple! of the symmetry. 
The general problem of finding all the ways of constructing equa- 

tions like Eq. 25 and Eq. 26 is the central problem of Lie-group 
theory. First, one must find all sets offabc. This is the problem of 
finding all the Lie algebras and was solved many years ago. The 
second problem is, given the Lie algebra, to find all the matrices that 
represent the generators. This is the problem of finding all the 
representations (or multiplets) of a Lie algebra and is also solved in 
general, at least when the range of values of each Ea is finite. Lie group 
theory thus offers an orderly approach to the classification of a huge 
number of theories. 

Once a symmetry of the Lagrangian is identified, then sets of n 
fields are assigned to n-dimensional representations of the symmetry 
group, and the currents and charges are analyzed just as in Note 2. 
For instance, in our example with three real scalar fields and the 
Lagrangian of Eq. 22, the currents are 

Ji(x)  = ~ ~ u ( a ~ q i ) q ~  

and, if m2 > 0, the global symmetry charge is 

where the quantum-mechanical charges Qa satisfy the commutation 
relations 

where the constants/abc are called the structure constants of the Lie 
algebra. The structure constants are determined by the multiplication 
rules for the symmetry operations, U(ei)U(e2) = U(ss), where 83 

depends on and Â£2 Equation 26 is a basic relation in defining a Lie 
algebra, and Eq. 21 is an example of a Lie group operation. The Qa, 
which generate the symmetry, are determined by the "group" struc- 
ture. The focus on the generators often simplifies the study of Lie 
groups. The generators Qa are quantum-mechanical operators. The 
(Ta)y of Eqs. 24 and 25 are matrix elements of Qa for some symmetry 

(The derivation of Eq. 29 from Eq. 28 requires the canonical com- 
mutation relations of the quantum (p,<x) fields.) 

The three-parameter group SU(2) has just been presented in some 
detail. Another group of great importance to the standard model is 
SU(3). which is the group of 3-by-3 unitary matrices with unit 
determinant. The inverse of a unitary matrix U is U^, so U^U= I. 
There are eight parameters and eight generators that satisfy Eq. 26 
with the structure constants of SU(3). The low-dimensional represen- 
tations of SU(3) have 1, 3, 6, 8, 10, . . . fields, and the different 
representations are referred to as 1,3,3,6,6,8,10,10, and so on. 



- Local Phase 
1 lnvariance and 
Electrodynamics 

The theories that make up the standard model are all based on the 
principle of local symmetry. The simplest example of a local sym- 
metry is the extension of the global phase invariance discussed at the 
end of Note 2 to local phase invariance. As we will derive below, the 
requirement that a theory be invariant under local phase transforma- 
tions implies the existence of a gauge field in the theory that mediates 
or carries the "force" between the matter fields. For electrodynamics 
the gauge field is the electromagnetic vector potential &(x) and its 
quantum particle is the massless photon. In addition, in the standard 
model the gauge fields mediating the strong interactions between the 
quarks are the massless glum fields and the gauge fields mediating 
the weak interactions are the fields for the massive ZO and W^ weak 
bosons. 

To illustrate these principles we extend the global phase invariance 
of the Lagrangian of Eq. 1 to a theory that has local phase invariance. 
Thus, we require 9 to have the same form for ~ ' (x )  and (p(x), where 
the local phase transformation is defined by 

The potential energy, 

î (p,̂ ) = m V v  + V M  9 

already has this symmetry, but the kinetic energy, ii@cpi13~cp, clearly 

does not, since 

!Â does not have local phase invariance if the Lagrangian of the 
transformed fields depends on e(x) or its derivatives. The way to 
eliminate the d u ~  dependence is to add a new field Ap(x) called the 
gauge field and then require the local symmetry transformation law 
for this new field to cancel the ape term in Eq. 32. The gauge field can 
be added by generalizing the derivative an to Dp, where 

This is just the minimal-coupling procedure of electrodynamics. We 
can then make a kinetic energy term of the form ( ~ h p ) + ( D ~ ~ )  if we 
require that 

When written out with Eq. 33, Eq. 34 becomes an equation for Axx) 
in terms ofAu(x), which is easily solved to give 

Equation 35 prescribes how the gauge field transforms under the local 
phase symmetry. 

Thus the first step to modifying Eq. 1 to be a theory with local 
phase invariance is simply to replace an by DÃ in 3'. (A slightly 
generalized form of this trick is used in the construction of all the 
theories in the standard model.) With this procedure the dominant 
interaction of the gauge field 4P(x) with the matter field (p is in the 
form of a current times the gauge field, #Au, where Jp is the current 
defined in Eq. 14. 

Spontaneous of the calculation is replacing dpqbPq by (fl'W(~,,(p). However, 
instead of simply substituting Eq. 17 for (p and computing 

I (~hp)yD~(p) directly, it is convenient to make a local phase trans- 

J Breaking of Local formation first: 
1 -- ' Phase Invar iance V~(X) = z[p(xl + Voj exp~jv~x)/qo~ , 

where tp(x) = [p(x) + (po]/V2. (The local phase invariance permits us 
We now show that spontaneous breaking of local symmetry im- to remove the phase of ~ ( x )  at every space-time point.) We 

plies that the associated vector boson has a mass, in spite of the fact emphasize the difference between Eqs. 17 and 4 1 : Eq. 17 defines the 
that A^Ap by itself is not locally phase invariant. Much of the p(x) and v(x) fields; Eq. 41 is a local phase transformation of (p(x) by 
calculation in Note 3 can be translated to the Lagrangian of Eq. 38. In angle n(x). Don't be fooled by the formal similarity of the two 
fact, the calculation is identical from EQ. 16 to Eq. 18, so the first new equations. Thus, we may write Eq. 38 in terms of ~ ( x )  = [ ~ ( x )  + 
step is to substitute Eq. 17 into Eq. 38. The only significantly new part and obtain 
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This leaves a problem. If we simply replace a,,(p by Dp(p in the the key to understanding the electroweak theory. 
Lagrangian and then derive the equations of motion for Ap, we find We now rediscover the Lagrangian of electrodynamics for the 
that A,, is proportional to the current J,,. The Ap field equation has no interaction of electrons and photons following the same procedure 
space-time derivatives and therefore AJx) does not propagate. If we that we used for the complex scalar field. We begin with the kinetic 
want ,dp to correspond to the electromagnetic field potential, we must energy term for a Dirac field of the electron \I/, replace a,, by D,, 
add a kinetic energy term for it to 9. defined in Eq. 33, and then add - '/4FPFw, where F P  is defined in 

The problem then is to find a locally phase invariant kinetic energy Eq. 36. The Lagrangian for a free Dirac field is 
term for A&). Note that the combination of covariant derivatives 
DpDv - DvD,,, when acting on any function, contains no derivatives yo,rac = c(iYv,, - m ) ~  , 
of the function. We define the electromagnetic field tensor of elec- 

(39) 

trodynamics as 
where yp are the four Dirac y matrices and \y = w'yo. Straightening out 
the definition of the yp matrices and the components of y~ is the 
problem of describing a spin-9'2 particle in a theory with Lorentz 
invariance. We leave the details of the Dirac theory to textbooks, but 

It contains derivatives of A,,. Its transformation law under the local note that we will use some of these details when we finally write down 
symmetry is the interactions of the quarks and leptons. The interaction of the 

electron field \y with the electromagnetic field follows by replacing a,, 
FLv = FPv . (37) by Dp. The electrodynamic Lagrangian is 

1 Thus, it is completely trivial to write down a term that is quadratic in <y - - pvF + - 
the derivatives of Ap, which would be an appropriate kinetic energy 4 pv v ( '~ 'Dp-~n)v ,  

term. A fully phase invariant generalization of Eq. 1 a is 

where the interaction term in i^ypD# has the form 

We should emphasize that 2' has no mass term for A&). Thus, when 
the fields correspond directly to the particles in Eq. 38, the vector where Jbm= q y , , ~  is the electromagnetic current of the electron. 
particles described by A#) are massless. In fact, A% is not in- What is amazing about the standard model is that all the electroweak 
variant under the gauge transformation in Eq. 35, so it is not obvious and strong interactions between fermions and vector bosons are 
how the A,, field can acquire a mass if the theory does have local similar in form to Eq. 40b, and much phenomenology can be 
phase invariance. In Note 6 we will show how the gauge field understood in terms of such interaction terms as long as we can 
becomes massive through spontaneous symmetry breaking. This is approximate the quantum fields with the classical solutions. 

(At the expense of a little algebra, the calculation can be done the 
other way. First substitute Eq. 17 for (p in Eq. 38. One then finds an 
A Q p  term in 2' that can be removed using the local phase trans- 
formation A; = A,, - [l/(e(po)]d,,n, p' = p, and n' = 0. Equation 42 
then follows, although this method requires some effort. Thus, a 
reason for doing the calculation in the order of Eq. 41 is that the 
algebra gets messy rather quickly if the local symmetry is not used 
early in the calculation of the electroweak case. However, in principle 
it makes little difference.) 

The Lagrangian in Eq. 42 is an amazing result: the n. field has 

vanished from 9 altogether (according to Eq. 41, it was simply a 
gauge artifact), and there is a term l/2e2q$ APA,, in 9, which is a mass 
term for the vector particle. Thus, the massless particle of the global 
case has become the longitudinal mode of a massive vector particle, 
and there is only one scalar particle p left in the theory. In somewhat 
more picturesque language the vector boson has eaten the Goldstone 
boson and become heavy from the feast. However, the existence of 
the vector boson mass terms should not be understood in isolation: 
the phase invariance of Eq. 42 determines the form of the interaction 
of the massive An field with the p field. 

This calculation makes it clear that it can be tricky to derive the 
spectrum of a theory with local symmetry and spontaneous sym- 
metry breaking. Theoretical physicists have taken great care to 
confirm that this interpretation is correct and that it generalizes to the 
full quantum field theory. 
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The SU(2) X U(1) 
Electroweak 

7 Model 
The main emphasis in these Notes has been on developing just 

those aspects of Lagrangian field theory that are needed for the 
standard model. We have now come to the crucial step: finding a 
Lagrangian that describes the electroweak interactions. It is rather 
difficult to be systematic. The historical approach would be com- 
plicated by the rather late discovery of the weak neutral currents, and 
a purely phenomenological development is not yet totally logical 
because there are important aspects of the standard model that have 
not yet been tested experimentally. (The most important of these are 
the details of the spontaneous symmetry breaking.) Although we will 
write down the answer without excessive explanation, the reader 
should not forget the critical role that experimental data played in the 
development of the theory. 

The first problem is to identify the local symmetry group. Before 
the standard model was proposed over twenty years ago, the elec- 
tromagnetic and charge-changing weak interactions were known. The 
smallest continuous group that can describe these is SU(2), which has 
a doublet representation. If the weak interactions can change elec- 
trons to electron neutrinos, which are electrically neutral, it is not 
possible to incorporate electrodynamics in SU(2) alone unless a 
heavy positively charged electron is added to the electron and its 
neutrino to make a triplet, because the sum of charges in an SU(2) 
multiplet is zero. Various schemes of this sort have been tried but do 
not agree with experiment. The only way to leave the electron and 
electron neutrino in a doublet and include electrodynamics is to add 
an extra U(1) interaction to the theory. The hypothesis of the extra 
U(1) factor was challenged many times until the discovery of the 
weak neutral current. That discovery established that the local sym- 
metry of the electroweak theory had to be at least as large as SU(2) X 

U( 1). 
Let us now interpret the physical meaning of the four generators of 

SU(2) X U(1). The three generators of the SU(2) group are I+, IT,, 
and I ,  and the generator of the U(1) group is called Y, the weak 
hypercharge. (The weak SU(2) and U(l)  groups are distinguished 
from other SU(2) and U(l)  groups by the label "W.") I +  and I are 
associated with the weak charge-changing currents (the general def- 
inition of a current is described in Note 2), and the charge-changing 
currents couple to the W^ and W charged weak vector bosons in 
analogy to Eq. 40b. Both A and Yare related to the electromagnetic 
current and the weak neutral current. In order to assign the electron 
and its neutrino to an SU(2) doublet, the electric charge Qem is 
defined by 

so the sum of electric charges in an n-dimensional multiplet is n Y/2. 
The charge of the weak neutral current is a different combination of 
I3 and Y, as will be described below. 

The Lagrangian includes many pieces. The kinetic energies of the 
vector bosons are described by -Sfy4, in analogy to the first term in 
Eq. 38. The three weak bosons have masses acquired through spon- 
taneous symmetry breaking, so we need to add a scalar piece Pscalar to 
the Lagrangian in order to describe the observed symmetry breaking 
(also see Eq. 38). The fermion kinetic energy -Sffermion includes the 
fermion-boson interactions, analogous to the electromagnetic inter- 
actions derived in Eqs. 39 and 40. Finally, we can add terms that 
couple the scalars with the fermions in a term -Sfyukawa- One physical 
significance of the Yukawa terms is that they provide for masses of 
the quarks and charged leptons. 

The standard model is then a theory with a very long Lagrangian 
with many fields. The electroweak Lagrangian has the terms 

(The reader may find this construction to be ad hoc and ugly. If so, 
the motivation will be clear for searching for a more unified theory 
from which this Lagrangian can be derived. However, it is important 
to remember that, at present, the standard model is the pinnacle of 
success in theoretical physics and describes a broader range of natural 
phenomena than any theory ever has.) 

The Yang-Mills kinetic energy term has the form given by Eq. 52 
for the SU(2) bosons, plus a term for the U(1) field tensor similar to 
electrodynamics (Eqs. 36 and 38). 

where the U(l) field tensor is 

and the SU(2) Yang-Mills field tensor is 

where the cabc are the structure constants for SU(2) defined in Eq. 24 
and the W: are the Yang-Mills fields. 



continued 
SU(2) X U(1) has two factors, and there is an independent coupling 

constant for each factor. The coupling for the SU(2) factor is called g, 
and it has become conventional to call the U(l) coupling g/2.  The 
two couplings can be written in several ways. The U(1) of elec- 
trodynamics is generated by a linear combination of I3 and Y, and the 
coupling is, as usual, denoted by e, The other coupling can then be 
parameterized by an angle Ow. The relations among g, g ,  e, and Ow 
are 

e = gg'/ ̂ s'+s'1 and tan - g'/g. 

These definitions will be motivated shortly. In the electroweak theory 
both couplings must be evaluated experimentally and cannot be 
calculated in the standard model. 

The scalar Lagrangian requires a choice of representation for the 
scalar fields. The choice requires that the field with a nonzero 
vacuum value is electrically neutral, so the photon remains massless, 
but it must carry nonzero values of I3 and Y so that the weak neutral 
boson (the q) acquires a mass from spontaneous symmetry break- 
ing. The simplest assignment is 

assignment that the q doublet has Y = 1.  After the spontaneous 
symmetry breaking, three of the four scalar degrees of freedom are 
"eaten" by the weak bosons. Thus just one scalar escapes the feast 
and should be observable as an independent neutral particle, called 
the Higgs particle. It has not (?) yet been observed experimentally, 
and it is perhaps the most important particle in the standard model 
that does not yet have a firm phenomenological basis. (The mini- 
mum number of scalar fields in the standard model is four. Ex- 
perimental data could eventually require more.) 

We now carry out the calculation for the spontaneous symmetry 
breaking of SU(2) X U(1) down to the U(l) of electrodynamics. Just 
as in the example worked out in Note 6, spontaneous symmetry 
breaking occurs when m2 < 0 in Eq. 62. In contrast to the simpler 
case, it is rather important to set up the problem in a clever way to 
avoid an inordinate amount of computation. As in Eq. 41, we write 
the four degrees of freedom in the complex scalar doublet so that it 
looks like a local symmetry transformation times a simple form of the 
field: 

We can then write the scalar fields in a new gauge where the phases of 
~ ( x )  are removed: 

where we have used the freedom of making local symmetry trans- 
where (p+ has I3 = 9'2 and Y = I,  and qo has I3 = -Y2 and Y = 1. Since formations to write (p'(x) in a very simple form. This choice, called 
(p does not have Y = -1 fields, it is necessary to make (p a complex the unitary gauge, will make it easy to write out Eq. 63 in explicit 
doublet, so (q4')1^= -9- has I3 = -I/? and Y= -1, and ((pÂ¡) has I3 = '/2 matrix form. Let us drop all primes on the fields in the unitary gauge 
and Y = -1. Then we can write down the Lagrangian of the scalar and redefine W t  by the equation 
fields as 

where 
where the definition of the Pauli matrices is used in the first step, and 
the W* fields are defined in the second step with a numerical factor 

g ' g 
D / ~ = d ~ < p -  iTB,q- i y ,  Wtq (63) that guarantees the correct normalization of the kinetic energy of the 

charged weak vector bosom. 
Next, we write out the Dn(p in explicit matrix form, using Eqs. 63, 

is the covariant derivative. The 2-by-2 matrices Ta are the Pauli 65, and 66: 
matrices. The factor of V2 is required because the doublet represen- 
tation of the SU(2) generators is ~, /2 .  The factor of Y2 in the Bp term D~, ,  2 -i\/2gw;(P +  PO)/^ 
is due to the convention that the U(1) coupling is gf/2 and the a@ - i(gflp - ?W;XP + <po)/2 

(67) 



Finally, we substitute Eqs. 65 and 67 into Eq. 63 and obtain Our purpose here will be to write out Eq. 72 explicitly for the 
assignments. 

Consider the electron and its neutrino. (The quark and remaining 
lepton contributions can be worked out in a similar fashion.) The left- 
handed components are assigned to a doublet and the right-handed 
components are singlets. (Since a neutral singlet has no weak charge, 
the right-handed component of the neutrino is invisible to weak, 
electromagnetic, or strong interactions. Thus, we can neglect it here, 

(68) whether or not it actually exists.) We adopt the notation 

where p is the, as yet (?), unobserved Higgs field. 
It is clear from Eq. 68 that the W fields will acquire a mass equal to 

rno/2 from the term quadratic in the W fields, (&?/~)V~MW;'.  where L and R denote left- and right-handed. Then the explicit 
The combination f B 1  - ?w; will also have a mass- Thus, we statement of Eq. 72 requires constructing Dp for the left- and right- 
"rotate" the Bp and W; fields to the fields Z: for the weak neutral handed leptons. 
boson and Ap for the photon so that the photon is massless. 

where 

cos Ow = g/dS'+S'l and sin Ow = g/Vy!+ /̂2 ( )  The weak hypercharge of the right-handed electron is -2 so the 
coefficient of Bp in the first term of Eq. 74 is (3'12) X (-2) = g. We 

Upon substituting Eqs. 69 and 70 into Eq. 68, we find that the $ leave it to the reader to check the rest of Eq. 74. The absence of a mass 
mass is !4 an m 2 ,  so the ratio of the Wand Z masses is term is not an error. Mass terms are of the form \yw = GLvR + GRvL. 

Since y~ is a doublet and VR is a singlet, an electron mass term must 

(7 1) violate the SU(2) X U(1) symmetry. We will see later that the electron 
mass will reappear as a result of modification of cSfyukawa due to 
spontaneous symmetry breaking. 

Values for Mw and My have recently been measured at the CERN 
The next task is exciting, because it will reveal how the vector proton-antiproton collider: Mw = (80.8 k 2.7) GeV/c2 and Mz = 

(92.9 k 1.6) GeV/c2. The ratio Mw/Mz calculated with these values bosons interact with the leptons. The calculation begins with Eq. 74 

agrees well with that given by Eq. 71. (The angle Ow is usually and requires the substitution of explicit matrices for ta Wt,  VR, and 
VI/L. We use the definitions in Eqs. 66, 69, and 73. The expressions 

expressed as sin2ew and is measured in neutrino-scattering experi- 
ments to be sin20w = 0.224 k 0.015.) The photon field As does not become quite long, but the calculation is very straightforward. After 

simplifying some expressions, we find that SlePton for the electron 
appear in cSfscalar, so it does not become massive from spontaneous 
symmetry breaking. Note, also, that the f f (x )  fields appear nowhere 

lepton and its neutrino is 

in the Lagrangian; they have been eaten by three weak vector bosons, am _ + i < p d P h  - + e ~ p  
which have become massive from the feast. 

The next term in Eq. 56 is gfermion. Its form is analogous to Eqs. 39 
and 40 for electrodynamics: 

- * [ t a n 2 e a k w  + K'ype~) - &->*'ft.]~, 

The physical problem is to assign the left- and right-handed fennions 
2 W + P 2  

to multiplets of SU(2); the assignments rely heavily on experimental 1 
data and are listed in "Particle Physics and the Standard Model." 

- vF+p VLyi-vLzp . 



continued 
The first two terms are the kinetic energies of the electron and the 
neutrino. (Note that e = e~ + eR.) The third term is the elec- 
tromagnetic interaction (cf. Eq. 40) with electrons of charge -e, 
where e is defined in Eq. 60. The coupling ofA,, to the electron current 
does not distinguish left from right, so electrodynamics does not 
violate parity. The fourth term is the interaction of the W' bosons 
with the weak charged current of the neutrinos and electrons. Note 
that these bosons are blind to right-handed electrons. This is the 
reason for maximal parity violation in beta decay. The final terms 
predict how the weak neutral current of the electron and that of the 
neutrino couple to the neutral weak vector boson zO. 

If the left- and right-handed electron spinors are written out 
explicitly, with e = Vi(1 - y5)c, the interaction of the weak neutral 
current of the electron with the zo is proportional to $'[(I - 

4sin2ew) - ys]eZp. This prediction provided a crucial test of the 
standard model. Recall from Eq. 71 that sin2ew is very nearly '14, so 
that the weak neutral current of the electron is very nearly a purely 
axial current, that is, a current of the form $ y 5 e .  This crucial 
prediction was tested in deep inelastic scattering of polarized elec- 
trons and in atomic parity-violation experiments. The results of these 
experiments went a long way toward establishing the standard model. 
The tests also ruled out models quite similar to the standard model. 
We could discuss many more tests and predictions of the model 
based on the form of the weak currents, but this would greatly 
lengthen our discussion. The electroweak currents of the quarks will 
be described in the next section. 

We now discuss the last term in Eq. 56, YYukawa. In a locally 
symmetric theory with scalars, spinors, and vectors, the interactions 
between vectors and scalars, vector and spinors, and vectors and 
vectors are determined from the local invariance by replacing 9,, by 
Du. In  contrast, -S^Yukawa, which is the interaction between the scalars 
and spinors, has the same form for both local and global symmetries: 

This form for -Sfyukawa is rather schematic; to make it explicit we must 

specify the multiplets and then arrange the component fields so that 
the form of YYukawa does not change under a local symmetry trans- 
formation. 

Let us write Eq. 76 explicitly for the part of the standard model we 
have examined so far: (P is a complex doublet of scalar fields that has 
the form in the unitary gauge given by Eq. 65. The fermions include 
the electron and its neutrino. If the neutrino has no right-handed 
component, then it is not possible to insert it into Eq. 76. Since the 
neutrino has no mass term in -S^iepion, the neutrino remains massless 
in this theory. (If VR is included, then the neutrino mass is a free 
parameter.) The Yukawa terms for the electron are 

where we have used the fact that e\e\ = & = 0, and e = e~ + e~ is 
the electron Dirac spinor. Note that Eq. 77 includes an electron mass 
term, 

so the electron mass is proportional to the vacuum value of the scalar 
field. The Yukawa coupling is a free parameter, but we can use the 
measured electron mass to evaluate it. Recall that 

,?(Po e<Do 
M i . =  - = - = 81 G e V ,  

2 2 sin Ow 

where 8 /4x  = 11137. This implies that (PO = 25 1 GeV. Since me = 

0.0005 1 1 GeV, Gy = 2.8 X for the electron. There are more than 
five Yukawa couplings, including those for the p and T leptons and 
the three quark doublets as well as terms that mix different quarks of 
the same electric charge. The standard model in no way determines 
the values of these Yukawa coupling constants. Thus, the study of 
fermion masses may turn out to have important hints on how to 
extend the standard model. 
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Quarks 

the assumption oHocal synuaetry Wt to a who% form 
is highly itisirfeted. As far as we know, only the quark and glum fields 
are a%cessacy to describe the strong interacTions, and so the most 
gsneral Lagiangian is 



continued 
mass matrix is then diagonal and each quark has a definite mass, 
which is an eigenvalue of the mass matrix. We will reappraise this 
situation below when we describe the weak currents of the quarks. 

After successfully extracting detailed predictions of the electro- 
weak theory from its complicated-looking Lagrangian, we might be 
expected to perform a similar feat for the sSfwD of Eq. 79 without too 
much difficulty. This is not possible. Analysis of the electroweak 
theory was so simple because the couplings g and g' are always small, 
regardless of the energy scale at which they are measured, so that a 
classical analysis is a good first approximation to the theory. The 
quantum corrections to the results in Note 8 are, for most processes, 
only a few percent. 

In QCD processes that probe the short-distance structure of 
hadrons, the quarks inside the hadrons interact weakly, and here the 
classical analysis is again a good first approximation because the 
coupling gc is small. However, for Yang-Mills theories in general, the 
renormalization group equations of quantum field theory require 
that gs increases as the momentum transfer decreases until the 
momentum transfer equals the masses of the vector bosons. Lacking 
spontaneous symmetry breaking to give the gluons mass, QCD 
contains no mechanism to stop the growth of gs, and the quantum 
effects become more and more dominant at larger and larger dis- 
tances. Thus, analysis of the long-distance behavior of QCD, which 
includes deriving the hadron spectrum, requires solving the full 
quantum theory implied by Eq. 79. This analysis is proving to be very 
difficult. 

Even without the solution of PQCD, we can, however, draw some 
conclusions. The quark fields q r i  in Eq. 79 must be determined by 
experiment. The Eightfold Way has already provided three of the 
quarks, and phenomenological analyses determine their masses (as 
they appear in the QCD Lagrangian). The mass of the u quark is 
nearly zero (a few ~ e V / c ~ ) ,  the d quark is a few M~V/C* heavier than 
the u, and the mass of the s quark is around 300 M ~ v / c ~ .  If these 
results are substituted into Eq. 79, we can derive a beautiful result 
from the QCD Lagrangian. In the limit that the quark mass dif- 
ferences can be ignored, Eq. 79 has a global SU(3) symmetry that is 
identical to the Eightfold-Way SU(3) symmetry, Moreover, in the 
limit that the u, d, and s masses can be ignored, the left-handed u, d, 

and s quarks can be transformed by one SU(3) and the right-handed 
u, d, and s quarks by an independent SU(3). Then QCD has the 
"chiral" SU(3) X SU(3) symmetry that is the basis of current algebra. 
The sums of the corresponding SU(3) generators of chiral SU(3) X 
SU(3) generate the Eightfold-Way SU(3). Thus, the QCD Lagrangian 
incorporates in a very simple manner the symmetry results of 
hadronic physics of the 1960s. The more recently discovered c 
(charmed), b (bottom), and t (top) quarks are easily added to  the QCD 
Lagrangian. Their masses are so large and so different from one 
another that the SU(3) and SU(3) X SU(3) symmetries of the Eight- 
fold-Way and current algebra cannot be extended to larger sym- 
metries. (The predictions of, say, SU(4) and chiral SU(4) X SU(4) do 
not agree well with experiment.) 

It is important to note that the quark masses are undetermined 
parameters in the QCD Lagrangian and therefore must be derived 
from some more complete theory or indicated phenomenologically. 
The Yukawa couplings in the electroweak Lagrangian are also free 
parameters. Thus, we are forced to conclude that the standard model 
alone provides no constraints on the quark masses, so they must be 
obtained from experimental data. 

The mass term in the QCD Lagrangian (Eq. 79) has led to new 
insights about the neutron-proton mass difference. Recall that the 
quark content of a neutron is udd and that of a proton is uud. If the u 
and d quarks had the same mass, then we would expect the proton to 
be more massive than the neutron because of the electromagnetic 
energy stored in the uu system. (Many researchers have confirmed 
this result.) Since the masses of the u and d quarks are arbitrary in 
both the QCD and the electroweak Lagrangians, they can be adjusted 
phenomenologically to account for the fact that the neutron mass is 
1.293 M ~ V / C ~  greater than the proton mass. This experimental 
constraint is satisfied if the mass of the d quark is about 3 M ~ V / C ~  
greater than that of the u quark. In a way, this is unfortunate, because 
we must conclude that the famous puzzle of the n-p mass difference 
will not be solved until the standard model is extended enough to 
provide a theory of the quark masses. 

Weak Currents. We turn now to a discussion of the weak currents of 
the quarks, which are determined in the same way as the weak 
currents of the leptons in Note 8. Let us begin with just the u and d 
quarks. Their electroweak assignments are as follows: the left-handed 
components u\. and dl form an SU(2) doublet with Y = '/3, and the 
right-handed components UR and dp are SU(2) singlets with Y = 4/3 



and 4, respectively (recall Eq. 55). 
The steps followed in going from Eq. 73 to Eq. 75 will yield the 

electroweak Lagrangian of quarks. The contribution to the Lagran- 
gian due to interaction of the weak neutral current ̂ (nc) of the u and d 
quarks with 2' is 

<y(nc) ,= 
e 
- -  

sin cos Ow Ĵ  Z ^ ,  

where 

The reader will enjoy deriving this result and also deriving the 
contribution of the weak charged current of the quarks to the 
electroweak Lagrangian. Equation 83 will be modified slight1 y when 
we include the other quarks. 

So far we have emphasized in Notes 8 and 9 the construction of the 
QCD and electroweak Lagrangians for just one lepton-quark 
"family" consisting of the electron and its neutrino together with the 
u and d quarks. Two other lepton-quark families are established 
experimentally: the muon and its neutrino along with the c and s 
quarksand the T lepton and its neutrino along with the t and b quarks. 
Just like (vJL and e ~ ,  (v,JL and p~ and (vT)= and TL form weak-SU(2) 
doublets; a, pp and TR are each SU(2) singlets with a weak hyper- 
charge of -2. Similarly, the weak quantum numbers of c and s and of 
t and b echo those of u and d: CL and SL form a weak-SU(2) doublet as 
do t~ and bL. Like MR and dp,  the right-handed quarks CR, sv, tR, and 
bR are all weak-SU(2) singlets. 

This triplication of families cannot be explained by the standard 
model, although it may eventually turn out to be a critical fact in the 
development of theories of the standard model. The quantum 
numbers of the quarks and leptons are summarized in Tables 2 and 3 
in "Particle Physics and the Standard Model." 

All these quark and lepton fields must be included in a Lagrangian 
that incorporates both the electroweak and QCD Lagrangians. It is 
quite obvious how to do this: the standard model Lagrangian is 

simply the sum of the QCD and electroweak Lagrangians, except that 
the terms occurring in both Lagrangians (the quark kinetic energy 
terms i$iyh3u^f and the quark mass terms kMyii/,) are included just 
once. Only the mass term requires comment. 

The quark mass terms appear in the electroweak Lagrangian in the 
form gYukawa (Eq. 77). In the electroweak theory quarks acquire 
masses only because SU(2) X U(l) is spontaneously broken. How- 
ever, when there are three quarks of the same electric charge (such as 
d, s, and b), the general form of the mass terms is the same as in Eq. 
79, qiMj,\y,, because there can be Yukawa couplings between d and s, 
d and b, and s and b. The problem should already be clear: when we 
speak of quarks, we think of fields that have a definite mass, that is, 
fields for which Mi, is diagonal. Nevertheless, there is no reason for 
the fields obtained directly from the electroweak symmetry breaking 
to be mass eigenstates. 

The final part of the analysis takes some care: the problem is to find 
the most general relation between the mass eigenstates and the fields 
occurring in the weak currents. We give the answer for the case of two 
families of quarks. Let us denote the quark fields in the weak currents 
with primes and the mass eigenstates without primes. There is 
freedom in the Lagrangian to set u = u' and c = c'. If we do so, then 
the most general relationship among d, s, d', and s' is 

(' ) ( c o s O c  sin OC 
cos ec -sin ") (,Â¥ 1- 

The parameter Oc, the Cabibbo angle, is not determined by the 
electroweak theory (it is related to ratios of various Yukawa cou- 
plings) and is found experimentally to be about 13Â¡ (When the b and 
t (=tf) quarks are included, the matrix in Eq. 84 becomes a 3-by-3 
matrix involving four parameters that are evaluated experimentally.) 
The correct weak currents are then given by Eq. 83 if all quark 
families are included and primes are placed on all the quark fields. 
The weak currents can be written in terms of the quark mass 
eigenstates by substituting Eq. 84 (or its three-family generalization) 
into the primed version of Eq. 83. The ratio of amplitudes for s + u 
and d Ã‘ u is tan ec; the small ratio of the strangeness-changing to 
non-strangeness-changing charged-current amplitudes is due to the 
smallness of the Cabibbo angle. It is worth emphasizing again that the 
standard model alone provides no understanding of the value of this 
angle. ! 




